

# Beyond 10G PON

Rishabh Sandhir, RVP and Kade Kincannon, SSE August 2024



© 2024 Calix. All rights reserved.

## What Are the Options Beyond 10G-PON?

10G PON NOW

> XGS 10GEPON NGPON2

- All have a User Data Throughput of about ~8.5G
- NGPON2 would need "channel bonding" to exceed ~8.5G

# 25G PON



- Combines 50G EPON & XGS
- Small Ecosystem
- Low System & ASIC Participation
- Low Operator Interest
- Low Volumes Likely
- ~21G

### 50G-PON



- 50G PON is an Approved ITU-T Standard!!!
- Embraced by a Majority of the PON Ecosystem
- Leverages the GPON and XGS Lineage
- 50G x 25G and 50G x 50G
- PON Slicing
- Large Ecosystem Developing
- Large Operator Interest
- Large Volumes Likely (China)
- ~42G

Every Generation PON Standard has Increased Capacity by at Least 4 Times!!!

### **ITU-T PON Standards Evolution**



# **Key Market Inflection Points**

100G PON?

50G Era (50x25G & 50x50G)



About ~10 years between next generation PON deployments (trend is ~9 years 2007, 2016 & 2025)

- About ~20 years for yearly PON port & ONT sales of the next generation PON to surpass the previous
- For about ~25 years of PON Standards there has always been a 4X-5X Capacity Increase to Next Gen.
- This enabled FTTH PON Operators as well as the Ecosystem to maximize their investments

\* Source: Omdia research



# 50G PON and PON Slicing are Game Changers







### ITU-T 50G PON G.9804 Higher Speed Passive Optical Networks (HSP)

| Standard                                   | Approved<br>Date                                                                                                                                                                  | Status   | Description                                                                                                                                                       |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| G.9802.1 (2021) Amendment 1 (02/23)        | 2023-02-22                                                                                                                                                                        | In Force | Updated WDM-PON requirements                                                                                                                                      |  |
| <b>G.9804.1</b> (2019) Amendment 1 (08/21) | 2021-08-06                                                                                                                                                                        | In Force | Higher speed passive optical networks -<br>Requirements                                                                                                           |  |
| <b>G.9804.2</b> (2021) Amendment 1 (02/23) | 2023-02-22                                                                                                                                                                        | In Force | Higher speed passive optical networks - Common transmission convergence layer specification                                                                       |  |
| <b>G.9804.3</b> (2021) Amendment 1 (02/23) | 2023-02-22                                                                                                                                                                        | In Force | 50-Gigabit-capable passive optical networks (50G-<br>PON): Physical media dependent (PMD) layer<br>specification                                                  |  |
| <b>G.9805</b> (2022) Amendment 1 (06/23)   | 2023-06-13                                                                                                                                                                        | In Force | Coexistence of PON systems via upstream<br>wavelength Option 3<br>50G Upstream N1 29 dB link budget without multi-<br>PON reach ~20 km 32 split / ~14 km 64 split |  |
| Current ITU-T 50G Work Activities          | <ul> <li>50G Upstream C+ optics 32 dB budget supporting ~20km 64 split / ~10km 128</li> <li>Key Exchanges Minor updates for more clarity for interoperability purposes</li> </ul> |          |                                                                                                                                                                   |  |

Source: nups://www.itu.int/rec/1-REC-G/en



# **PON Wavelength Considerations**

- Both 25G PON & 50G PON defined upstream wavelengths previously assigned to GPON & XGS
- The Problem: Many service providers have GPON and XGS-PON in use on the same fiber
- New Upstream Wavelength Option 3 placed between GPON & XGS (last remaining wavelength)
- Many service providers will have to choose 25G "or" 50G (not 25G "and" 50G)



Recommend not using the last wavelength for 25GS-PON it does not meet the capacity needs

## **50G OLT Dual line-rate upstream receiver**

50G OLT dual line-rate upstream receiver

Enables compatibility of 50Gx50G "and" 50Gx25G ONUs on the same OLT port



Upstream Data Burst Signal from 50G or 25G ONUs



# Beyond 50G PON - ITU-T G.suppl.VHSP

### Overview

- G.vhsp (Very High Speed PON) name given during study phase
- PON transmission technologies above 50 Gb/s per wavelength
- 100G PON (minimum) likely higher 250G PHY (200G) or 400G PON
- Status Under Study and Timing 2025 with medium priority
- Proposal 1: 250G PHY rate usable 200G (2 x 100G service)

### Proposal 2: 100G Coherent (E.g., CableLabs)

- Pros: Long Distances and High Split Ratios
- Cons: High cost & high-power module 20W+ (XGS 2W / 50G 3.5 5W)

### Proposal 3: 100G Downstream PAM4 with IM-DD

- Pros: 100G downstream PAM4 likely supported in today's ODNs
- Cons: 100G upstream PAM4 not likely possible

PON distance grow as "Coherent Optics" become part of the ecosystem



### Symmetrical 100G+ Deployments ~2030+



# **PON Slicing ITU-T - Series G Supplement 74**

#### What is a PON Slicing?

- Allocating a portion of PON capacity to a group of users with each group having its own DBA.
- All DBAs are managed by hierarchical traffic scheduler.
- Slice groups could be based on flows across many ONUs that have a similar QoS profile or per groups of ONUs.

#### **Benefits of PON Slicing**

- Each slice and members in a slice can have configurable Bandwidth and Latency properties
- Any bandwidth unused above guaranteed may be shared with users within each slice and among all slices



ITU-T - Series G Supplement 74

### **50G PON has the Capacity to Enable ITU-T PON Slicing**



## **Future End-to-End Network Slicing**



# CalixCloud

#### Customizable programmability of end-to-end network slicing

- End-to-end Service Orchestration
- **Networking Automation**
- **Proactive Network Monitoring**
- Security & Policy Enforcement
- **Usage Based Billing**

#### **OLT Channel Termination (CT)**

#### **50G PON Slicing**

(Policy set per slice includes bandwidth and latency controlled Hierarchical Scheduler / DBA)

& SR Policy with SLA

**50G PON Slicing via ITU-T Supplement 74** 

#### **Network Slicing Examples**

#### **3<sup>rd</sup> Party Provider / Carrier Transport Services**

**Open Access Carrier Transport** Mobile Xhaul **Open Mobile Offload** 

#### Enterprise



Education **Smart Cities** Industrial IoTs **Private Networks** 



# **Beyond 10G PON Drivers**



## What are the drivers beyond 10G-PON?

Business Services

>10G

PON

Small / Medium / Large CIR beyond XGS-PON "True" 10G or 25G Service Private Networks PON Slicing (BW & latency) offerings for Groups of Subs

Aggregation Services <u>Wireless Access</u> Mobile Xhaul Wi-Fi 7 Access Points Distributed Access Transport To/From MDUs, Cabinets & Nodes

Residential Services

Service / Speed Tier Billboard Speed Wars Service Tier beyond XGS <u>Customer Traffic</u> Traffic + Service Tier beyond XGS 4K/8K Streams & Metaverse

## **Services & PON Assessment**

| Segment                                    | Service / Aggregation (per customer or per site) |                                           | Gbps         | 10G PON      | 25G PON      | 50G PON      |
|--------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------|--------------|--------------|--------------|
| Business Max Service Tier and Peak Traffic |                                                  | <8.5 Gbps                                 | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Business<br>Services                       | Business True 10G Services                       |                                           | 10 Gbps      | X            | $\checkmark$ | $\checkmark$ |
| True 25G Services                          |                                                  | 25 Gbps                                   | ×            | X            | $\sim$       |              |
| Wi-Fi Access<br>Point Transport            | Wi-Fi Access                                     | Wi-Fi 6 / Wi-Fi 6e Access Point Transport | 9.6 Gbps     | ×            | $\checkmark$ | $\sim$       |
|                                            | Point Transport                                  | Wi-Fi 7 Access Point Transport            | 30 – 46 Gbps | ×            | X            | $\checkmark$ |
| Aggregation<br>Services 5G Mid/Backhau     |                                                  | Small Site (FR1 carrier)                  | 2.0 Gbps     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                                            |                                                  | Small Site (FR2 carrier)                  | 3.7 Gbps     | $\sim$       | $\checkmark$ | $\sim$       |
|                                            | 5G Mid/Backhaul                                  | Small Site (FR1 + FR2 carriers)           | 5.7 Gbps     | $\sim$       | $\checkmark$ | $\sim$       |
|                                            |                                                  | Medium Site (FR1 + FR2 carriers)          | 15.2 Gbps    | ×            | $\checkmark$ | $\checkmark$ |
|                                            |                                                  | Large Site (FR1 + FR2 carriers)           | 36.8 Gbps    | X            | X            | $\checkmark$ |
|                                            | Transport                                        | To/From MDU, Cabinet, & Node              | 10 – 40G     | ×            | X            | $\checkmark$ |
| Residential                                | Max Service Tier and Peak Traffic                |                                           | <8.5 Gbps    | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Services Max Service T                     |                                                  | d Peak Traffic                            | >8.5 Gbps    | ×            | $\checkmark$ | $\checkmark$ |

**50G-PON enables convergence of all services to one network** 

### Bandwidth per Subscriber Growth Rates Downstream Traffic per Sub Compound Annual Growth Rate (CAGR)



Downstream Peak Period Average Bandwidth per Subscriber

#### Peak Hours Traffic Growth Rates Vary Due to Application Adoption and Measurement Timeframe

Source: 6.176 Kbps per subscriber BHBD in the year 2000, "Bandwidth Monitoring Parameters for Capacity Management", page 3, "200 or 300 customers per DS-1", (used the average in this model), Dennis Cleary, NCTA 2000) Source: 89 Kbps per subscriber BHBD in the year 2010, 233 Kbps in the year 2012, and 1070 Kbps in the year 2017, *"Traffic Engineering in a Fiber Deep Gigabit World"*, Ulm, et al., Cable-Tec Expo 2017 Source: 2.36 Mbps per subscriber BHBD in the year 2020 and 3.5 Mbps in the year 2022, *"Broadband Capacity Growth Models"*, Ulm, et al., Cable-Tec Expo 2022



# Applications Driving Future Traffic CAGRs (1 of 2)

#### Streaming Impact (Downstream)



Important: With No Change in subscriber behavior streaming bandwidth may increase by 3 to 10 times

Source: Streaming Media https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=131687 Source: https://help.netflix.com/en/node/306 Source: WBA, https://wballiance.com/resource/wba-annual-industry-report-2023/ Source: Gartner, https://tinyurl.com/yb6g5lxr



Simplify. Excite. Grow.

#### VR / AR Bandwidth (Downstream)



"By 2026, 25% of people will spend at least one hour per day in virtual shared spaces, thus driving enormous pressure on home Wi-Fi networks." (and access network) <u>Important:</u> AR/VR are new behaviors using long duration streams (like movies) but at 16 to 200 times the bandwidth

# **Drivers for Continued Traffic CAGRs**

#### Streaming Platform (Downstream)

| Streaming Platform    | SD (480)<br>or HD (720p) | High<br>Definition<br>(HD) – 1080p | Ultra High<br>Definition<br>(UHD/4K) |                 |
|-----------------------|--------------------------|------------------------------------|--------------------------------------|-----------------|
| Netflix <sup>11</sup> | 3 Mbps                   | 5 Mbps                             | 15 Mbps                              | 8K              |
| YouTube               | 3 Mbps                   | 7 Mbps                             | 15 Mbps                              |                 |
| Hulu                  | 1.5 Mbps                 | 3 Mbps                             | 8 Mbps                               |                 |
| Amazon Prime Video    | 0.9 Mbps                 | 3.5 Mbps                           | 25 Mbps                              | 30 - 30<br>Mbps |
| Disney+               | 5 Mbps                   | 10 Mbps                            | 25 Mbps                              | nor             |
| HBO Max / MAX         | 5 Mbps                   | 10 Mbps                            | 25 Mbps                              | Stream          |
| Apple TV+             | 1 Mbps                   | 6 Mbps                             | 25 Mbps                              | Oucam           |
| Paramount+            | 1.5 Mbps                 | 3 Mbps                             | 25 Mbps                              |                 |

### Virtual Reality Streams (Downstream)

|             | VR<br>Resolution | FPS | Equivalent<br>Resolution | Maximum<br>Throughput<br>(Mbsp) | Maximum<br>Streaming<br>Latency (ms) | Maximum<br>Interactive<br>Latency |
|-------------|------------------|-----|--------------------------|---------------------------------|--------------------------------------|-----------------------------------|
| Early VR    | 1K X 1K          | 30  | 240p                     | 25                              | 40                                   | 10                                |
| Entry VR    | 2K X 2K          | 30  | SD                       | 100                             | 30                                   | 10                                |
| Advanced VR | 4K X 4K          | 60  | HD                       | 400                             | 20                                   | 10                                |
| Extreme VR  | 8K X 8K          | 120 | 4K                       | 1000-2350                       | 10                                   | 10                                |

#### ESTIMATE THROUGHPUT AND LATENCY FOR VR/AR TECHNOLOGIES

#### Conferencing Platform (Down and Upstream)

| Conferencing Platform    | Quality  | Upstream | Downstream |
|--------------------------|----------|----------|------------|
| Zoom 1:1 Video Calling   | SD Video | 600 Kbps | 600 Kbps   |
|                          | 720p HD  | 1.2 Mbps | 1.2 Mbps   |
|                          | 1080p HD | 3.8 Mbps | 3.0 Mbps   |
|                          | 4K UHD   | TBD      | TBD        |
| Zoom Group Video Calling | SD Video | 1.0 Mbps | 600 kbps   |
|                          | 720p HD  | 2.6 Mbps | 1.8 Mbps   |
|                          | 1080p HD | 3.8 Mbps | 3.0 Mbps   |
|                          | 4K UHD   | TBD      | TBD        |

### Home Security Cloud Platforms (Upstream)

| Home Security Platforms            | Upstream |
|------------------------------------|----------|
| ADT (per camera)                   | 1.5 Mbps |
| Arlo Ultra Series (per camera)     | 3.0 Mbps |
| Nest Cams and IQ Cams (per camera) | 1.2 Mbps |
| Nest Dropcam (per camera)          | 2.0 Mbps |
| Ring Spotlight Cam (per camera)    | 2.0 Mbps |
| Vivint (per camera)                | 2.0 Mbps |



# **Traffic Predictions and Max Service Tiers**

**Downstream Traffic with 20% Compound Annual Growth Rate (CAGR)** 





Image started with 3.5 Mbps per Subscriber during peak busy hours in 2022 and a projection of the 20% CAGR until 2040. (Subs per port could also mean service group used in DOCSIS) FCC Speed Performance Metrics: https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-twelfth-report

# **Traffic Predictions and Max Service Tiers**

**Downstream Traffic with 20% Compound Annual Growth Rate (CAGR)** 



### 50G PON: Reduces P2P Ethernet, Win the Billboard Speed Wars, and Extends the Life of XGS



Image started with 3.5 Mbps per Subscriber during peak busy hours in 2022 and a projection of the 20% CAGR until 2040. (Subs per port could also mean service group used in DOCSIS) FCC Speed Performance Metrics: https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-twelfth-report

# Reasons for 50G PON (Why not 25GS PON?)

#### 1. ITU-T 50G PON is a Standard!

- ITU-T G.9804 higher speed PON (HSP) (50G PON) is an approved standard that has worldwide support from the entire PON ecosystem
- 25GS-PON Multi-Source Agreement (MSA) Group is not a standard development organization (SDO), like ITU-T and IEEE, and <u>the ITU-T rejected</u> 25 Gbit/s single channel PON.
- 25G PON long-term viability is questionable due to low adoption interest from chip vendors, system vendors, and operators

#### 2. ITU-T 50G PON has the Capacity!

- Meets current "and" future use cases for business services (10 Gbit/s and 25 Gbit/s), Open RAN (O-RAN) Mobile Xhaul Backhaul and Midhaul, IEEE Wi-Fi 7 & 8 AP transport, aggregation layer functions, and future residential services, and <u>25G does not.</u>
- Service Tier and Traffic Growth Rates suggest that 50G PON will have a long useful life, while 25G may last a decade or less.

#### 3. ITU-T 50G PON has better technology "and" economic flexibility!

- 50G specifies single channel downstream and single channel upstream capable of operating at 50 Gbit/s, 25 Gbit/s, and 12.5 Gbit/s.
- 50G specifies OLTs have a dual-rate receiver to support "both" 50x50 ONUs "and" 50x25 ONUs on the same OLT interface providing economic flexibility for BSPs to use "one" OLT interface and a choice of symmetric or asymmetric ONUs with likely different price points.

#### 4. ITU-T 50G PON supports ITU-T PON slicing!

- ITU-T supplement 74 PON slicing enables 50G PON to be programable into slices of capacity, QoS, and latency for groups of subscribers
- PON slicing efficiency allows "unused" capacity above CIR to be shared by others in the slice, for other slices, and across the entire PON interface.
- PON slicing is cost effective compared to optical Ethernet that dedicates wavelengths, ports, space, and power, even if little capacity is used.

#### Simplify. Innovate. Grow.

### **Recommendations for using 50G PON + PON Slicing**

### Use 50G PON Capacity and PON Slicing

Enables programmability of capacity slices, QoS, and latency for groups of subscribers (Open Access, Mobile Offload, Community Wi-Fi, Business Services, Xhaul, Aggregation Layer & Residential Services)

### Use 50G PON to Extend the Life of XGS

- When XGS hits the capacity limit avoid moving to smaller splits ratios
- Instead overlay 50G PON in the existing PON serving areas
- Then move the Top Service Tiers and Heavy Users to 50G PON

If GPON & XGS are in use, consider using the last wavelength for 50G PON

PON technology should have a long life, so wait for 50G PON and skip 25G





# Thank You

2023 Calix. All rights reserved